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Abstract: A simple treatment is used to estimate the tunneling splittings caused by rearrangements in a variety of model 
cluster systems, including (HF)2, benzene-Ar, benzene-Ar2, CsH5

+, BgHg2", and homoatomic clusters bound by the 
Lennard-Jones and Morse potentials. Given sufficient generators to represent all the point group operations and 
feasible rearrangements, the effective molecular symmetry group is calculated along with the connectivity of the minima 
on the potential energy surface. This defines the secular determinant which provides the best solutions to the multiminima 
problem that may be written as linear combinations of localized functions. A Hflckel-type approximation is then 
employed, assuming that the only non-zero off-diagonal Hamiltonian matrix elements are between minima which are 
directly linked by a rearrangement. The magnitude of this matrix element is estimated from properties of the calculated 
reaction pathways, using a model one-dimensional Schrddinger equation. Solving the Huckel-type secular equations 
gives the splitting pattern for each rigid-molecule energy level and also an estimate of the magnitude of the effect, along 
with the electric dipole allowed transitions. The results compare satisfactorily with experiment where data are available 
(i.e. the splittings are of the right order of magnitude), and a number of other cases are identified where tunneling effects 
might be observable. 

I. Introduction 

One of the most well-known manifestations of quantum 
mechanics must be the tunneling effect in the ammonia molecule, 
where the vibration-rotation energy levels anticipated for the 
rigid molecule are found to be doubled. It occurs due to the 
interaction between wave functions localized at the two distinct 
minima on the potential energy surface (PES) which interconvert 
via a planar Du transition state.1'2 There has recently been 
renewed interest in the tunnel effect due to advances in 
spectroscopic techniques and the realization that tunneling 
splittings can provide detailed information about intermolecular 
forces from the insight they provide into the underlying PES. 
Van der Waals dimers have been particularly popular subjects 
for study, including (NH3)2,

3 (H2O)2,
4 and (HF)2,

56 among 
others.7 Hydrogen-bonded systems, especially water clusters, 
are especially interesting because of the unique importance of 
water,7 and Pugliano and Saykally have recently presented results 
for (H2O)3 employing far-infrared vibration-rotation tunneling 
spectroscopy.8 A detailed analysis of the latter system, based 
upon new theoretical calculations and the approach described in 
the present work, is given in an accompanying paper.9 Inversion 
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of detailed spectroscopic results to provide accurate empirical 
PES's is also being actively pursued by several groups.10 

Here we predict the tunneling splittings for a variety of model 
cluster systems, some of which are bound by empirical potentials 
and others whose structures have been calculated ab initio. 
Information obtained by characterizing the relevant rearrange­
ment pathways is used to map the multidimensional problem 
onto a simple one-dimensional model and, hence, to obtain 
estimates of the tunneling matrix elements between minima. 

II. Reaction Path Characterizations 

All the determinations of minima, transition states, and 
minimum energy reaction pathways were performed by eigen­
vector-following1 ' (EF), and many of the mechanisms investigated 
in this paper have been reported in earlier works,12-17 if only in 
terms of the transition states and the minima that they link. The 
particular EF algorithm has been described before;18 the present 
calculations were conducted in Cartesian coordinates following 
Baker and Hehre19—some calculations of this sort for clusters 
bound by model potentials were recently reported.20 In each 
case, analytic first and second derivatives of the energy were 
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employed throughout, and a maximum step size criterion was 
used to scale the steps if needed.20 

To calculate the minimum energy reaction pathways, the 
transition states were first perturbed by displacing the geometries 
in both directions along the reaction path according to the unique 
normal mode corresponding to the direction of negative curva­
ture.21 The required displacements are obtained by dividing the 
components of the normal mode vector by the square root of the 
appropriate atomic mass and then dividing by 50 to obtain a 
suitably small perturbation. The magnitude of the displacement 
is not usually critical, though one sensitive case is identified for 
(H2O)3 in the companion paper.9 Having obtained the perturbed 
geometries, the pathway is followed by performing EF searches 
for minima. The smaller the EF steps are, the closer the 
optimization should be to the minimum energy reaction path;22 

however, high accuracy is not appropriate in the present context, 
and most of the calculations reported here used a maximum step 
size of 0.15 units (either bohr or angstrom, as appropriate). 

Most of the reaction pathways are visualized using Mathe­
matical to plot nine configurations from the rearrangement. The 
first and last are always the two minima in question, and the 
middle one is the transition state. The remaining six frames were 
selected at regular spacings along the two downhill paths, three 
on each side. Where possible the clusters are triangulated to give 
a better three-dimensional impression of the change in shape. A 
suitably scaled set of displacement vectors corresponding to the 
normal mode with the unique imaginary frequency is also 
superimposed upon the transition state in most cases. 

III. Estimating the Tunneling Matrix Elements 

One object of the present work is to provide a rapid estimate 
of the magnitude of possible tunneling effects and the associated 
splitting patterns for various model clusters. More accurate 
calculations of tunneling states have certainly been performed 
previously, using both semiclassical2 and fully quantum me­
chanical approaches.6 However, the number of degrees of freedom 
in some of the present cases makes the mapping of these problems 
onto the one-dimensional semiclassical model2 or an ab initio 
method somewhat problematic. The present treatment can 
provide an estimate of the order of magnitude of the tunneling 
splitting for both symmetrical and asymmetrical barriers using 
information from the reaction path; hence we can draw some 
conclusions, albeit qualitative, about tunneling in the more 
complicated systems. 

Since the splitting patterns are determined by symmetry, while 
the numerical values require further approximations, the former 
are likely to be more reliable than the latter. However, the Hiickel-
type treatment described below could be combined with more 
accurate calculations of the tunneling matrix elements, or the 
predicted splitting patterns could be fitted to experimental data 
to obtain these parameters. As the rectangular well model 
employed in the present work is rather crude, it would probably 
not be profitable to extend such fitting to the barrier heights and 
widths. 

The discussions of the molecular symmetry group24-25 in the 
following section require us to consider molecules where atoms 
of the same element are distinguished by labels. As some of the 
notation is also used in the present section, it is convenient to 
introduce it here. When discussing labeled atom species it is 
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Figure 1. Model one-dimensional potentials considered in this work for 
the estimation of tunneling matrix elements: (a) equivalent structures, 
(b) different structures. 

important to be specific about whether one is talking about 
geometries that are structurally distinct or geometries which only 
differ in terms of the labels carried by atoms of the same element. 
In this work the nomenclature of Bone et al. will be used: a 
"structure" refers to a particular geometry and a "version" refers 
to a structure with a particular labeling scheme.26 Minima that 
are directly linked by a given rearrangement in a single step are 
said to be "adjacent". 

The approach adopted here is analogous to the linear com­
bination of atomic orbitals (LCAO) method for the construction 
of molecular orbitals. If there are n distinguishable versions of 
a given structure, then there are n degenerate wave functions, 
each localized in one particular potential energy well, for any 
given vibration-rotation state of the molecule. In the simplest 
case, where rearrangements occur only between these n distin­
guishable versions, we may approximate the true wave function 
as a linear combination of localized wave functions (LCLW).27 

Applying the variational principle then leads to a set of secular 
equations, just as in standard molecular orbital theory. The 
eigenvalues of the secular determinant give the tunneling energy 
levels, and the corresponding eigenvectors must transform 
according to irreducible representations of the effective molecular 
symmetry group (section IV). Hence, to set up the secular 
determinant, we require the Hamiltonian and overlap matrix 
elements of the localized functions. 

Degenerate rearrangements are those which link minima that 
have the same geometry if atoms of the same element are not 
distinguished.28 In the simplest, but important, case we consider 
one type of degenerate rearrangement mechanism which links n 
versions of the same structure. Here, all the diagonal matrix 
elements of "ft are the same, and the off-diagonal elements of H 
are denoted by /S, the tunneling matrix element, if the corre­
sponding minima are directly linked by the rearrangement 
(adjacent), and are set to zero otherwise. Analogous assumptions 
are made for the overlap matrix. Since the localized basis 
functions decay exponentially in classically forbidden regions, 
this Huckel-type approximation can be quite good. 

The problem of finding which minima are directly connected 
is addressed in the next section. To estimate /3, we consider the 
one-dimensional model shown in Figure 1 a. The textbook solution 
of the single-well Schrodinger equation is29 
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*(*,) = 

-̂co < X1 < -a/2, C1 SXv(X^sZIm(Vx - E)/h), 

j - a / 2 < X1 < a/2, Bx cos(xxV2mE/h - m/2), 

(a/2 < x, < », (-1)"C, exr,(-xxV Im(Vx-E)/h), 

(D 
where Xx = x in this case, a is the width of the well, Bx and Ci 
are defined by normalization and continuity conditions, and the 
energy, E, is determined by solution of 

sAx-E = VE tSin(aV2mE/2h + mr/2). (2) 

There is always at least one bound state.29 To estimate B, we now 
consider the second well, for which the wave functions, \p(x2), in 
the absence of the first well are the same as above, but with x2 
= x - (a + b). Hence 

B=Mx1)WlMx2)) 

~ '-I Ja/2 

-x\f'Im(Vx-E) /hi f^_ _ d l + y \e{x-a-b)V2m(Vl-E)/h fa 

\ 2m dx
2 1Z 

= Cx
2Eb exp(-(a + b)y/2m(Vx -E)/h), (3) 

where ft is the true Hamiltonian which includes both wells, 
contributions from outside the region between the two wells have 
been neglected, and the normalization constants are the same by 
symmetry if we arrange for the localized functions to be combined 
in phase. This approximation gives B = ES where 5 is the overlap 
integral (4,(xi)\^(x2))• However, despite this result, \p(x2) and 
(̂JC1) are not eigenfunctions of ft when both wells are present;30 

if they were, then no tunneling splittings would occur. Similarly, 
the diagonal elements of ft are not equal to the unperturbed 
energy E because of the presence of the second well. 

The secular problem which determines the tunneling states is 
defined by |H - £S| = O, where S and H are the usual overlap 
and Hamiltonian matrices, respectively. The required matrix 
elements were calculated from analytic expressions without 
neglecting any contributions from pa rticular regions. For systems 
where the tunneling is found to be large the wave functions may 
decay slowly enough in the classically forbidden regions for the 
approximation inherent in eq 3 to be poor. In one case (the very 
facile "flipping" mechanism of water trimer, discussed elsewhere9), 
the overlap integrals calculated between the "localized" functions 
of the neighboring wells are so close to unity that the overlap 
matrix, S, has a negative eigenvalue. Here the barrier is so low 
that the corresponding motion is more like a perturbed translation 
than a large amplitude vibration, and the LCLW secular problem 
is not well-defined. 

In fact, it is more convenient to discuss the results with reference 
to the model secular problem in which the diagonal elements of 
H are set to zero and the off-diagonal overlap integrals are 
neglected. The roots of the secular determinant can then usually 
be written straightforwardly in terms of B, and various helpful 
analogies with simple Hiickel theory can be exploited. If we 
denote the levels of this idealized problem by X', and those obtained 
without neglecting off-diagonal overlap and the diagonal elements 
of H by X, then there is usually an essentially exact linear mapping 
\ = c + d\' between the two. The results are therefore summarized 
by giving the levels for the model problem in terms of 8, along 
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with the numerical value of d X B, where d is the scaling factor 
in the above mapping. When the tunneling effect is calculated 
to be negligible, the value of B itself is given. If more than one 
mechanism is feasible, then experiment can tell which it is that 
leads to the biggest splittings even if we only know the splitting 
pattern in terms of 8 parameters. 

In three cases (for Morse clusters M6 with M = Ne), the 
mapping is distinctly nonlinear, and the effective B values quoted 
for d X $ use the best-fit value of d. When two types of 
rearrangement are involved, the scaling factor for the tunneling 
levels when both mechanisms are considered together may be 
different from when they are considered separately, and this 
information will also be given. 

To evaluate B, we need to know Ci2, E, a, b, and m, all of which 
were obtained by mapping the multidimensional reaction pathway 
onto the above double-well potential in an intuitive fashion. Once 
the barrier and mass, Vx and m, are known, the energy levels can 
be found by numerical solution of eq 2, and once E has been 
calculated, the normalization constants may be determined 
numerically using continuity conditions. Both tasks were per­
formed using Mathematical3 high-precision arithmetic was 
required in some cases where B is very small. Although such 
cases will not be of experimental interest, the numbers are needed 
to tell us this. The lowest permitted eigenvalue was sought by 
starting Newton's root-finding method from a number of different 
guesses for £ in the range 1 (H-I O-16 hartree.31 The lowest solution 
was generally found several times; given the other approximations, 
it is probably not crucial to locate the smallest eigenvalue, although 
the present procedure should usually do so. For want of any 
better information the barrier width b was simply set equal to the 
width of the potential wells, a, leaving just two parameters to be 
determined. 

At this point it is convenient to introduce several properties of 
a reaction path which are helpful in discussing the above 
parameters. The path length S = fds is the integrated arc length 
in 3iV-dimensional nuclear configuration space, where N is the 
number of atoms. S was calculated as a sum over the eigenvector-
following steps: 

steps * i 

where AQ, is the step for nuclear Cartesian coordinate Q1 (not 
mass-weighted) and the outer sum is over all the eigenvector-
following steps. The discretization of the path does not lead to 
significant errors in 5 for the present purposes. The moment 
ratio of displacement, y, is defined as32 

(ZmS)-Q1C))2)2 {) 

where Qt(s) is the value of the nuclear Cartesian coordinate Qi 
for minimum s, etc. If only a single atom moves (localized 
process), then y = N, while if all atoms move through the same 
distance (cooperative process), then 7 = 1; hence, y provides a 
measure of how cooperative a rearrangement is. As the minimum 
energy pathways are calculated by projecting out overall trans­
lation and rotation at each step,20 y is simply evaluated using the 
relative positions of the two minima at the endpoints. (These 
pathways are not strictly equivalent to the results for steepest 
descent in mass-weighted coordinates but should be close enough 
for the present purposes.) The third parameter is the distance 
between minima in nuclear configuration space33 

(31) The hartree and bohr radius, ao, are the atomic units of energy and 
length,respectively, where 1 hartree = 4.359 748 X 10"18 JandO0 = 5.291 772 
X 10-'1 m. 
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S=^y/£>,(*) -S1 (O)2 (6) 

By definition Z) < 5, and in the present work we take D = 2a. 
In choosing a value for the mass, m, we must allow for the fact 
that some of the system may be relatively unaffected by the 
rearrangement. This was achieved by defining 

_ N^[Q1O-Qm2 

Tm y£,[<m-Qm2 

If all the atoms move through the same distance, then ym is the 
total molecular mass, but if only one atom moves, then ym is the 
mass of that atom. In the present calculations we therefore take 
m = ym; an alternative possibility is considered in the Appendix. 

Various assumptions are required to map the calculated reaction 
pathway onto the model one-dimensional problem, and we clearly 
cannot expect to produce better than an order of magnitude 
estimate for /3 with this approach. This in itself may be a useful 
guide to the most promising systems for further study, both by 
experiment and perhaps by more accurate calculations.2'6 Fur­
thermore, the division of splittings into "small", "medium", and 
"large", which is the most realistic ambition of the numerical 
calculations, may also be helpful, as for the water trimer.9 As 
mentioned above, the symmetry-determined splitting patterns 
will probably be more reliable than the numerical values. The 
barriers used were not corrected for zero-point effects, as these 
should be included in the model problem by solving the appropriate 
Schrodinger equation. 

To generalize this LCLW-type approach to systems with more 
than one sort of minimum should not be difficult. In this case 
we would need to calculate relative values of the diagonal elements 
of $i for all the different local minima, along with off-diagonal 
elements for nondegenerate rearrangements between different 
structures. The off-diagonal elements may be estimated within 
the current framework by considering the model problem shown 
in^igure lb. The solutions to eqs 1 and 2 for the two different 
wells are distinguished by the subscripts 1 and 2, and 

|812- <*(x,)|#hKx2)> 

= i (£ , + S2NIWX1)IIKX2)) -

~ | ( £ , + £2)< Wx1)IvKx2) >barrierregion 

= ^EiIIA6MW,) sinh a{ki _ ki)/1 (8) 

where kt = "VIm[V1 - Et)/h, £,• are the lowest energy eigen­
values for the isolated wells (referred to a common energy zero), 
and the normalization constants may now be different. Note 
that in the limit V\ -— V2 we recover 1812 - • /3, while the factor 
\/(k2-ki) means that tunneling effects caused by the interaction 
of different structures will generally be smaller than for degenerate 
rearrangements, in agreement with previous work.2 To estimate 
1812, we therefore require the same reaction path data as before 
along with numerical solutions of the two isolated well problems. 
Two examples of this kind of calculation are reported in section 
V; as before, the actual values of #12 quoted were calculated from 
an analytic formula which does not neglect the contributions 
from any regions. The problem of setting up the corresponding 
secular problem using the LCLW approach has not yet been 
tackled. 

IV. The Effective Molecular Symmetry Group 

For molecules which undergo rearrangements on some given 
experimental time scale, the appropriate group in which to classify 

the energy levels is the effective molecular symmetry (MS) group 
introduced by Longuet-Higgins24 and developed by Bunker.25 To 
exploit this formalism, we must distinguish identical nuclei by 
means of labels. The operations of the MS group then consist 
of permutations, P, of identical nuclei amongst themselves, and 
permutation-inversions, P*, where a permutation is combined 
with the inversion, E*, of all particle coordinates through the 
origin of a space-fixed axis system. (E denotes the identity 
operation.) The complete nuclear permutation-inversion (CNPI) 
group contains all such operations, which all commute with the 
full molecular Hamiltonian.24 However, to achieve some of these 
permutation-inversions may require bond-breaking or other 
processes that are effectively impossible under experimental 
conditions. This leads us to distinguish "feasible" operations which 
correspond to permutation-inversions that can actually occur. 
Even for an essentially rigid molecule, with no energetically 
feasible rearrangements available, some permutation-inversions 
are still possible. These form a subgroup of the CNPI group 
which is isomorphic to the rigid molecule point group.25-34 The 
result of such operations is, at most, to reorient the original 
geometry, and hence they will be referred to as "barrierless" 
operations in this paper. The MS group contains all the 
permutation-inversions that are considered to be feasible for a 
given labeled version of the structure under the prevailing 
conditions, which may include operations corresponding to 
different rearrangement mechanisms. 

To illustrate these ideas, consider the question of how many 
potential wells there are corresponding to a particular structure 
on a given potential energy surface (PES). The total number of 
permutation-inversion operations is 2 X Ni! X JV2! X ..., where 
there are N1 atoms of element 1 in the given structure. This is 
also the order of the CNPI group, ACNPI- However, some of these 
labeling schemes correspond to the same versions and differ only 
in orientation, i.e. by barrierless operations. Since there are 
A£Jj such operations, where h^ is the order of the point group 
corresponding to the structure M, the number of minima is 
'"CNPI/^PG'

 a s k well-known.35 This information is useful in 
applications where the global nature of the PES must be considered 
explicitly, for example, in the calculation of fractional residence 
times for different structures36 or in the estimation of thermo­
dynamic properties by summation of the phase space associated 
with different structures.37 Similarly, the number of distin­
guishable transition states of a given structure that mediate a 
particular type of rearrangement for the same minimum is 
/iCNPI/Aj|, and the connectivity at each vertex of the reaction 
network (or reaction graph) is therefore 2Ap 5̂//ij§. Bone et al.26 

have extended such considerations to prove that the number of 
versions linked by the operations of the MS group is AMS/^PG for 
both minima and transition states. 

We can apply these results to produce a concise derivation of 
the "reaction path degeneracy" recently reconsidered in terms of 
the CNPI group by Karas et al.3* Reaction rates are often 
calculated from formulas that employ the ratio of transition state 
to reactant density of states, such as the standard RRKM 
expression.39 These densities of states should contain the number 
of distinct versions of the given structure as a factor,36 and so the 
result can be written as ^£G/^PG times the ratio of the densities 
of states for one version of each structure. (A further factor of 
2 is needed for degenerate rearrangements because half the 
minima then correspond notionally to products.38) 

To deduce the reaction graph, simple algorithms were employed 
which are inherent in the theory that has developed the connection 
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(35) Dalton, B. J. MoI. Phys. 1966,11, 265. 
(36) Amar, F. G.; Berry, R. S. J. Chem. Phys. 1986, 85, 5943. 
(37) Wales, D. J. MoI. Phys. 1993, 7«, 151. 
(38) Karas, A. J.; Gilbert, R. G.; Collins, M. A. Chem. Phys. Lett. 1992, 

193, 181. 
(39) Forst.W. Theory of Unimolecular Reactions; Academic: New York, 

1973. 
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between double cosets and molecular rearrangements.40 The input 
to the program starts with the number of different atoms of each 
element and sufficient generator permutation-inversions to 
produce all the barrierless operations, denoted by bt, for a 
particular reference labeling of the minimum in question. 
(Extension to problems with more than one kind of minimum 
would be possible along similar lines.) The complete group £PG, 
of dimension h^, has been generated when all the products bfij 
for b/, bj E SfG are themselves members of SPG- At this stage 
we also know ACNPI and the number of distinct versions of the 
minimum. Note that Spa is isomorphic to the rigid molecule 
point group but consists of permutation-inversion operations. 

The generators for the feasible rearrangements are then read, 
together with the appropriate /3 elements. Let the generator for 
the ith type of feasible rearrangement of the reference minimum 
be g(. As Bone has emphasized,41 the operations in the coset 
gi§?G all link the reference minimum to the same version in a 
single step. For the rearrangements illustrated, gf is chosen, 
wherever possible, to be a self-inverse operation of the appropriate 
transition state. However, for asymmetrical degenerate rear­
rangements, where the forward and reverse paths from the 
transition state are not equivalent, no such generator exists.42 A 
minimal set of operations linking the reference minimum to all 
the different adjacent versions was determined by considering 
the products bflgtbj. If an operation linking the reference version 
to some adjacent version is Mj, then the barrierless operations of 
that adjacent version are given by the set of products MjbkMfl. 
Hence, duplicate versions in the set bf^gibj are easily identified 
because we can test whether they are related by barrierless 
operations. In the present context the connectivity of the reaction 
graph is taken to mean the number of distinct versions adjacent 
to the reference: multiple connections on the PES between 
adjacent versions are counted only once. Connectivities greater 
than 2 are often associated with rearrangements whose initial 
displacements correspond to degenerate normal coordinates.26 

It may be helpful to compare some of the above formulas with 
a more familiar similarity transformation. For example, if the 
matrix corresponding to a given rotation about axis a is A, then 
the corresponding rotation about an axis b is given by B = C-1AC, 
where the rotation represented by C maps axis b onto axis a. 
Hence we consider the products bf^gfy to cover cases where the 
same mechanism may be applied to the reference version in more 
than one way. For example, in the DSD process for B8H8

2- (Figure 
4) any of four equivalent edges may be broken initially. The 
formula for the barrierless operations of an adjacent version is 
directly analogous to the example of rotations about different 
axes given above. 

The whole reaction graph was then calculated by considering 
a minimal set of MS group operations, M1, which transform the 
reference minimum into each version precisely once. In other 
words, we choose a set of hMS/h%Q operations which is in one-
to-one correspondence with the versions that are linked by the 
operations of the MS group. 

It then remains to test which members of this set are adjacent to each 
other. For each mechanism we have already determined the minimal 
set of operations which link the reference minimum to all its adjacent 
versions. The corresponding operations for any other version which 
is itself obtained by operation Mt from the reference minimum have 
the form Mt(,bj-lgicbj)Mrl. We must also allow for barrierless 
operations to occur before or after such rearrangements, when 
comparing the results with the other versions in the set. 

(40) Klemperer, W. G. J. Chem. Phys. 1972,56, 5478; J. Am. Chem. Soc. 
1972,94,6940 and 8360; 1973,95,380 and 2105. Muetterties, E. L. J. Am. 
Chem. Soc. 1969,91,4115. Nourse, J. G. J. Am. Chem. Soc. 1976,99,2063. 
Brocas, J. J. Am. Chem. Soc. 1986,108, 1135. Balasubramanian, K. Chem. 
Rev. 1985,85, 599. Hasselbarth, W.; Ruch, E. Theor. Chim. Acta 1973,29, 
259. Brocas, J.; Fastenakel, D. MoI. Phys. 1975, 30, 193. Dalton, B. J.; 
Brocas, J.; Fastenakel, D. MoI. Phys. 1976, 31, 1887. 

(41) Bone, R. G. A. Chem. Phys. Lett. 1992, 193, 557. 
(42) Nourse, J. G. J. Am. Chem. Soc. 1980, 102, 4883. 

It is not claimed that the above procedure is an any way original 
or efficient, merely that it is correct, and was convenient to 
program. In fact, some of the procedures employed will rapidly 
become unmanageable for larger MS groups, but they were quite 
satisfactory for all the examples in this paper, except B8H8

2-, for 
which the MS group was already known. 

Systems with more than one kind of rearrangement were treated 
by assuming that the degrees of freedom corresponding to different 
mechanisms are independent. Hence the diagonal Hamiltonian 
matrix elements resulting from solving the different one-
dimensional problems were simply added.43 In cases where 
adjacent versions are linked by more than one mechanism (or, 
indeed, by the same sort of mechanism via distinct versions of the 
same transition state), the corresponding off-diagonal element of 
"fi was simply set equal to the largest appropriate value of /8; the 
overlap matrix was dealt with similarly. The class structure of 
the MS group was also calculated in order to deduce the allowed 
electric dipole transitions within a given manifold of tunneling 
states. This program and the Mathematical scripts which 
evaluate /3 are available upon request from the author.44 

V. Results 

A detailed analysis of the water trimer is provided in an 
accompanying paper.9 The new results presented in the present 
report may be divided into calculations which employ either ab 
initio or empirical potentials. Ab initio geometry optimizations 
and reaction pathway calculations were performed for (HF)2, 
CsHs+, and B8H8

2". For (HF)2 much more accurate calculations 
and experimental results for the tunneling splittings are available6 

with which to compare the present approach, while for CsHs+ 

and B8H8
2" the MS groups have been analyzed previously15 and 

provide a test of the program that sets up the secular determinant. 
The empirical potentials employed are Morse45 and Lennard-
Jones46 and a more complicated potential which includes atom-
atom Lennard-Jones terms and the induction energy for benzene-
Ari and benzene-Ar2. The Morse and Lennard-Jones clusters 
considered are M ,̂ [LJ]3, and [LJJ4, in the commonly used 
notation where M stands for Morse (not metal), etc. Note that 
nuclear spin statistics have not been considered, and these would 
be needed to predict the relative intensities of the spectral 
transitions.24'47 

(HF>2. For this species it has recently been possible to obtain 
tunneling splittings from detailed theoretical analyses which are 
in good agreement with experiment.6 The values depend upon 
the vibrational state of the complex and typically lie between 
about 0.2 and 0.7 cm-1. In this case the complex is sufficiently 
small for double-j"48 plus polarization basis sets (DZP) and the 
second-order Moller-Plesset correlation correction49 to be em­
ployed in the reaction path calculations. The polarization 
functions consisted of a single set of p orbitals on each hydrogen 
(exponent 1.0) and a single set of six d orbitals on each fluorine 
(exponent 1.2) to give 42 basis functions in total. The geometry 
of the Ca transition state, energy-200.518 323 hartrees, for the 
trans-tunneling process in question is shown in Figure 2; the 
parameters are in reasonable agreement with more accurate 
calculations.6 The C5 minimum has energy -200.103 118 har­
trees, giving a barrier of 0.001 312 hartree or 288 cm"1 (3.44 kJ 
mol"1). The frequencies, in cm-1, are, for the minimum, 4182, 

(43) One might argue that the same should be done when a given mechanism 
links the reference minimum to more than one version. This has not been 
tested here, but it is unlikely to make a significant difference in the order of 
magnitude of the predicted splittings. 

(44) Send requests to dw34@cus.cam.ac.uk. 
(45) Morse, P. M. Phys. Rev. 1929, 34, 57. 
(46) Jones, J. E.; Ingham, A. E. Proc. R. Soc. London, A 1925,107, 636. 
(47) Balasubramanian, K.; Dyke, T. R. J. Phys. Chem. 1984,88,4688 and 

references therein. 
(48) Dunning, T. H. J. Chem. Phys. 1970, S3, 2823. Huzinaga, S. J. 

Chem. Phys. 1965, 42, 1293. 
(49) Moller, C; Plesset, M. S. Phys. Rev. 1934, 46, 618. 

mailto:dw34@cus.cam.ac.uk
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Figure 1. Trans-tunneling rearrangement of (HF>2. The distances, in 
bohrs, were calculated at the DZP/MP2 level of theory, and the barrierless 
operations of each stationary point are also indicated. 

4118, 593, 482, 221, and 168, and for the transition state, 4167, 
4147, 618, 449, 175, and 176/, so the barrier corrected for zero-
point effects (neglecting the imaginary frequency) is about 184 
cm1 . 

The calculated reaction path consists of 32 eigenvector-
following steps in this case, from which we find S = 3.937 a0, y 
- 1.81,-V-" 4.17 amu, D = 3.246 a0, and 0 = -0.014cm'. Note 
that this rearrangement is relatively delocalized in character, as 
indicated by the value of y. In this case the generator is (AB)-
(12) (in cycle notation, where A replaces B and 1 replaces 2) for 
the labeling scheme in Figure 2 and the MS group is isomorphic 
to Ci- ACNPI • 8, AMS • 4, and there are 4 distinct minima, 
connected in two isolated pairs, giving doublet splittings of the 
rigid molecule energy levels. Electric dipole transitions between 
partner levels of a given doublet are not allowed. The tunneling 
splitting is 2|)3| = 0.028 cm ', which is about 1 order of magnitude 
smaller than the experimental value.16 Using the lower zero-
point-corrected barrier in this case gives 0 = 0.034 cm '. If the 
total mass of the cluster is used instead of y„, then /3 = 3.1 X 
10 " cm ', and employing 5 instead of D for the total path length 
gives /3 = 0.000 73 cm '. Although the splitting obtained with 
the zero-point-corrected barrier is somewhat closer to reality, 
none of these alternative calculations of 0 provides a compelling 
reason to change the framework previously described. 

Systematic variation of one of the three parameters D, ym, or 
the barrier height, keeping the other two fixed, shows that /3 
decreases with y„ but has a maximum value for both D and the 
barrier height. 

CsHs+. The archetypal square-diamond, diamond-square 
(SDDS) rearrangement of square-based pyramidal C5H5

+ via a 
Cu symmetry transition state was recently analyzed in detail 
including geometry optimizations at the DZP/MP2 level.15 For 
the present purposes the pathway was calculated using minimal 
STO-3G basis sets (Figure 3), but the barrier employed in the 
calculation of/3 was the DZP/MP2 value (126.4 kJ mol '). The 
results (for a path consisting of 31 steps) are S = 5.342 O0. 7 = 
2.97, ym = 9.64 amu, D = 4.633 O0, and /3 = 8.7 X 1(H3 cm1 . 
In this case it is the relatively large barrier to rearrangement 
which results in the very small tunneling splitting, and the effect 
clearly lies well beyond the limits of experimental resolution. 

Using the same labeling scheme as in the previous analysis'5 

(Figure 3), the required generator is (de)(bc); since the CH units 
move as well-defined entities in this case, there is no need to 
specify the permutations for the hydrogen atoms as well. ACNPI 
= 28 800 and hMS = 240, which is the largest MS group that is 
possible without breaking C-H terminal bonds. Hence the 
minima occur in 120 separate sets or "domains"50 within which 
each minimum is connected to four others and the tunneling 
states and energies (with degeneracies in parentheses) are 

T1
+(D IY(4) r,+(5) ry(5) r3

+(4) r4*(S) r,-(6) 
40 30 20 0 -0 -20 -20 

& • & ' & 
minimum {C\v) 

X-& X 
transition state {Cjv) 

miuimum (C«v) 

Figure 3. SDDS rearrangement of CsHs+ calculated ab initio using 
minimal STO-3G basis sets. 

using the notation of Hamermesh51 for the irreducible repre­
sentations. In the previous analysis it was not possible to 
distinguish between T$* and T6

+. However, as the program which 
sets up the secular matrix also calculates the characters of the 
tunneling states, the above pattern can now be confirmed. The 
only allowed electric dipole transition within this manifold is 
between T6

+ and IY of energy 2/3. (If the MS group contains 
the inversion E*, then the irreducible representations can be 
classified as odd or even under this operation and the electric 
dipole selection rule is T+ ** T.) The accidental degeneracy at 
-20 is typical of Huckel-type analyses,52 and some other aspects 
of simple Huckel theory carry over also. For example, because 
the splitting pattern is not symmetrical about the energy origin, 
we know that the reaction graph must contain at least one odd-
membered ring. This may be deduced from the analogue of the 
Coulson-Rushbrooke pairing principle53 for alternant Huckel 
systems: for an alternant reaction graph (one containing no odd-
membered rings), the splitting pattern must obey a mirror relation 
with respect to the energy origin. The eigenvalue of 4/3 simply 
reflects the connectivity of the reaction graph—it corresponds to 
the totally in-phase linear combination of localized functions. 

BgH8
2". The archetypal diamond-square-diamond (DSD) 

rearrangement in BgHs2- was also investigated15 in the same study 
as CsHs+. For the present purposes the reaction pathway was 
calculated using minimal STO-3G basis sets (Figure 4), and the 
barrier used in the calculation of /3 was the DZP/MP2 value of 
28.1 kJ mol ', giving the following results: S = 4.750 an, y = 
2.07, ym = 30.26 amu, D = 4.172 a0. /3 = 3.0 X IO-34 cm"1. Note 
that this rearrangement is more delocalized than the SDDS 
processes for C5H5

+, according to the values of 7. This time the 
path contained 27 steps, and /3 is small due to the combination 
of a relatively high barrier and a relatively large value of ym. For 
the labeling scheme in Figure 4 the generator is (ab)(cd)(eh)*, 
where, as for C5H5

+, the corresponding permutations of the 
hydrogen atoms are omitted. ftcNFl = 2 X(8!)2and AMS = 80 640, 
which is the largest MS group that is possible without breaking 
B-H terminal bonds. There are 10 080 distinct minima in each 

(50) Watson, J. K. G. Can. J. Phys. 1965, 43, 1997. 
(51) Hamermesh, M. Group Theory and its Application to Physical 

Problems; Dover: New York. 1989; p 188. 
(52) Hall, G. G. UoI. Phys. 1977, 83, 551. 
(53) Coulson, C. A.; Rushbrooke, S. Proc. Cambridge Philos. Soc. 1940, 

36. 193. 
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minimum ( D M ) 

j transition state (C2») 

minimum ( D J J ) 

Figure 4. DSD rearrangement of BsHg2' calculated ab initio using minimal 
STO-3G basis sets. Vertex f is always hidden. 

of the 40 320 unconnected domains, so in this case no attempt 
was made toconstruct or diagonalize the secular matrix. However, 
the largest eigenvalue must be 4/3 because the reaction graph is 
4-connected. 

M4. The properties of the M6 Morse cluster were studied as 
a function of the range of the potential by Braier el a/.,13 and the 
evolution of the MS group as the topology of the PES changes 
has also been considered.1354 The Morse potential may be scaled 
so that there is one free parameter, p0, which governs the range 
of this isotropic pair potential.13 Small values of po correspond 
to a long-range potential and large values to a short-range 
potential; when p0 = 6, the curvature at the equilibrium pair 
separation matches that of the Lennard-Jones potential. The 
global minimum for 1 < p0 < 6, the range considered here, is the 
regular octahedron. For p0 > 4.1 there is one higher energy 
minimum, described as an incomplete pentagonal bipyramid13 

(IPB). The lowest energy rearrangement of the octahedron in 
this case is a simple DSD process13 linking it to the IPB (Figure 
5). For each IPB there are four possible DSD degenerate 
rearrangements with distorted capped square-based pyramidal 
(CSBP) transition states (Figure 6a). If one such process is 
followed by a rearrangement back to an octahedron, then an 
overall permutation-inversion of that structure may be effected. 
To estimate tunneling splittings, we need to choose values for the 
units of length and energy; here we calculate 0 using the well 
depth and equilibrium pair separation appropriate to Ar and Ne,13 

which are known from the properties of the corresponding 
diatomics.55 The actual values of p0 tabulated for Ar and Ne are 
5.72 and 2.05, and so these example calculations56 for p0 = 6 are 
really more appropriate for Ar than Ne. Of course, for both the 
Morse and Lennard-Jones potentials all the classically defined 
quantities S, D, y, ym, and the barrier height scale in an obvious 
way between Ar and Ne. 

For the octahedron to IPB rearrangement (Figure 5), the 
reaction path consisted of 23 steps and the barriers are 0.000 26/ 
0.000 12 and 0.000 049/0.000 022 hartree, for Ar and Ne, 

(54) Berry, R.S.; Braier, P.; Hinde, R. J.;Cheng, H.-P. lsr. J. Chem. 1990. 
30, 39. 

(55) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van 
Nostrand Reinhold: New York, 1979. 

(56) The numerical values were obtained for well depths of 0.000 3863/ 
0.000 074 24 hartree and equilibrium pair separations of 3.8/1.76 A for Ar/ 
Ne both here and for the Lennard-Jones clusters. 

• ••-• 
minimum (Oh) j 

j£ Jk- p 
transition state (Cj,,) 

W W p^ 
minimum (';, 

Figure 5. DSD rearrangement of M6 from an octahedron to an incomplete 
pentagonal bipyramid calculated at po = 6. 

respectively. Using the asymmetric model problem, S = 0.903 
O0. 7 = 1 -58, ym = 151.5 amu, D = 0.729 a0, and /3 = 0.54 cm"1 

for Ar and 5 = 0.415 O0, y = 1.58, ym = 75.75 amu, D = 0.336 
a0. and 0 = 8.5 cm-' for Ne. For the degenerate rearrangement 
of the IPB via a CSBP (Figure 6a), the path has 21 steps and 
the barrier is 0.000 29/0.000 055 hartree for Ar/Ne. Hence, S 
= 1.325 a,,. 7 = 1-32, y„ = 181.9 amu, D = 1.087 o0. and /3 = 
-0.000 78 cirr1 for Ar and 5 = 0.610 a0, y = 1.32, ym = 90.93 
amu, D = 0.501 a0. and /3 = 5.3 cm-1 for Ne. For the somewhat 
higher energy degenerate rearrangement of the IPB via an edge-
bridged trigonal bipyramid (Figure 6b), the path has 31 steps 
and the barrier is 0.000 39/0.000 074 hartree for Ar/Ne. Hence, 
5 = 1.961 a0. 7 = 1.40, y„ = 172.1 amu, D = 1.510 O0, and /3 
= -7.8 X 10-« cm 1 for Ar and 5 = 0.903 O0.7= 1 -40, y„ = 86.03 
amu, D = 0.695 <J0. and /3 = 2.5 cnr1 for Ne. Note that these 
mechanisms are all essentially delocalized. One may also treat 
the whole octahedron to octahedron path as a single step via 
either of the degenerate IPB rearrangements. Guessing the 
appropriate parameters from the above data gives /3 = -2.6 X 
1010/0.43 cm-1 for Ar/Ne using the CSBP path and /3 = 1.5 x 
10-"/0.13 cm"1 for Ar/Ne using the edge-bridging path. 

We may also treat the secular problem without explicitly 
including the IPB minimum by considering the octahedron 
interconversions as single steps with effective values of /3. The 
generator for the degenerate rearrangement of the IPB shown in 
Figure 6a is (12)(53)*, and this is also a suitable self-inverse 
generator to describe the overall transformation from the 
octahedron in Figure 5 to the octahedron that results if a final 
DSD process occurs for the IPB at the bottom right corner of 
Figure 6a. In previous work13 this permutation was represented 
as (12)(365), but the self-inverse generator is preferred here. 
The connectivity of the reaction graph for the generator (12)-
(53)* is 8, ACNPI = '440 = AMs. in agreement with the previous 
analysis,'3 and there are 30 distinct minima. The connectivity 
is actually easier to describe for the direct octahedron to 
octahedron rearrangements that occur for p0 < 4.1, as discussed 
below. The tunneling splittings with degeneracies in parentheses 
are 8/3(1), 2/3(15), -2/3(9), and -4/3(5), and the reaction graph 
therefore contains odd-membercd rings. In this case the MS 
group analysis takes about 10 min of cpu time on a Sun 
SPARCstation 10/41; there are 22 classes with 1 (twice), 15 
(four times), 40 (four times), 45 (twice), 90 (four times), 120 
(four times), and 144 (twice) members. There is one accidental 
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(P) 
minimum (C21.) 

minimum (C2,,) 

transition state (C,) 

minimum (C2V) 

Figure 6. Degenerate rearrangements of the Mt incomplete pentagonal 
bipyramid calculated at po = 6: (a, top) DSD process via a capped square-
based pyramid, (b, bottom) edge-bridging process via an edge-bridged 
pentagonal bipyramid. 

degeneracy in the above tunneling levels: the 15 states at energy 
2/3 span a ten- plus a five-dimensional irreducible representation, 
and the only allowed transition is between the latter states and 
the five states at -4/3, with an energy of 6/3. 

The situation is simpler when the potential is longer-ranged. 
For 1.9 < po < 4.1 the octahedron rearranges directly via a CSBP, 
as shown in Figure 7. The calculated pathway for p0 = 4 has 37 
steps and the barrier is 0.000 42/0.000 081 hartree for Ar/Ne. 
Hence, S = 4.257 O0, y = 1.01, ym = 237.5 amu, D = 2.510 a0, 
and /3 = -7.9 X 10"12 cm-' for Ar and 5 = 1.960 o0. 7 = 101, 
7m = 118.5 amu, D= 1.155 a0, and/3 = 0.059 cm-'for Ne. Note 
that this rearrangement is almost completely delocalized, with 
7 = 1. For the labeling scheme of Figure 7, the generator is 

minimum (O*) 

Figure 7. Degenerate rearrangement of the M„ octahedron via a capped 
square-based pyramid calculated at po = 4. 

(36)(45)*. This is equivalent to the generator used above, and 
so the MS group, splitting pattern, etc. are also the same. 

The reaction graph is again 8-fold connected, and each pair 
of adjacent octahedra are linked by three distinct versions of the 
CSBP transition state; such a possibility has in fact been previously 
considered by Bone in an abstract example." This 8-fold 
connectivity is the largest found in the present study, and it is 
interesting to compare the tunneling splittings with those expected 
for the "complete graph"57 where every minimum would be directly 
connected to every other distinct minimum. In this case it is easy 
to show that, within the present approximation, there would be 
one nondegenerate level at n/3, where n is the number of distinct 
minima, and an (n - l)-fold degenerate set of levels at -/3. The 
actual splitting pattern, with only four distinct energies and a 
largest eigenvalue of 8/3, is clearly approaching this limit. 

For po < 1.9 the mechanism changes and the lowest energy 
rearrangement of the octahedron proceeds via a Dy, trigonal prism, 
which may be viewed as the limiting geometry of the CSBP. For 
the labeling scheme of Figure 8, the generator is (12)(46)*, and 
so the MS group, splitting pattern, etc. are the same as for the 
previous two cases. The reaction pathway consisted of 23 steps 
with barriers of 0.000 050/0.000 0096 hartree for Ar/Ne, giving 
5 = 10.686 O0.7 = 1 00, ym = 240.0 amu, D = 9.400 a0. and /3 
= -1.0 X 10-" cm-' for Ar and S = 4.974 a0, y = 1.00, ym = 
120.0 amu, D = 4.375 a0. and /3 = 0.061 cm"1 for Ne. Note that 
in this case the mechanism is completely delocalized and ym is 
the total molecular mass. 

[LJJj and [LJ]4. The case of the Lennard-Jones cluster [LJh 
is somewhat unusual because there is only one distinct version of 
the equilateral triangular minimum.18 This minimum is linked 
to itself by three distinct linear transition states, and although 
there cannot therefore be any tunneling splittings, we may still 
calculate /3 from the formulas in section III for comparison with 
[LJ]4. The reaction path in this case has 39 steps, and the barrier 
is 0.000 37/0.000 074 hartree for Ar/Ne, giving S = 16.273 a0, 
7 = 1.50, ym = 80.0 amu, D = 10.295 a0, and /3 = -8.2 X 10-" 
cm-' for Ar and 5 = 7.434 a0, y = 1.50, ym = 40.0 amu, D = 

(57) See e.g.: Chartrand, G. Introductory Graph Theory; Dover: New 
York, 1985. Mezey.P. G. Studies in Theoretical Chemistry. Potential Energy 
Hypersurfaces; Elsevier: Amsterdam, 1987. 
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I able I. Lennard-Jones Parameter Values Employed for 
Benzene-Ari and Benzene-Ar2 
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Figure 8. Degenerate rearrangement of the M . octahedron via a /)-.<, 
trigonal prism calculated at po = I. 

4.-4-4 

Figure 9. Rearrangement of the [LJ]4 tetrahedron via a planar Du 
transition state. 

4.768 an. and 0 = -0.000 16 cm"1 for Ne. The generator is (12) 
and AcNPi = AMS = 12-

[LJ]4 is more interesting; the global minimum tetrahedron (E 
= -6 <) can rearrange via an edge-bridging-type process with a 
planar D^h transition state (E = -5.073 421 «), as shown in Figure 
9. The pathway has 34 frames, and the barrier is 0.000 36/ 
0.000 069 hartree for Ar/Ne, so 5 - 26.797 O0, y = 1.00, ym = 
160.0 amu, D = 10.155 O0, and 0 = 2.4 X 10-" c m ' for Ar and 
S = 12.411 a0, y = 100, ym = 80.0 amu, D = 4.704 a0, and 0 
= -5.8 x IfJr6 car1 for Ne. Hence, this rearrangement is 
completely delocalized. The generator for the labeling scheme 
in Figure 9 is (14)(23)*, ACNPI • ^MS = 48, and there are two 
distinct minima which are linked by this rearrangement. Fur­
thermore, the MS group is isomorphic to Oh, with E* corre­
sponding to the point group inversion operator, i, and the dipole 
moment operator therefore transforming as Ai11. The tunneling 

X$X.^1 *$*V» 
transition state (C2W) 

:*£*: 

;*£*: - r̂*̂  - : 4 t : 

minimum ( C ) 

Fifare 10. Rearrangment of benzene-Ari via a C^ transition state. 

states are Ai8 at energy 0 and A2„ at -0, and electric dipole 
transitions are therefore forbidden between them. 

Benzene-Ari and Benzene-Ar2. In a previous study17 it was 
found that benzene-Ar2, for example, possesses some very facile 
rearrangements which might be expected to produce observable 
tunneling splittings. The potential used in the present calculations 
has atom-atom Lennard-Jones dispersion-repulsion terms and 
includes a first-order approximation to the induction energy'7 

based upon a distributed multipole analysis.58 The Lennard-
Jones parameters are given in Table I; the C-Ar and H-Ar « 
parameters were produced using the Slater-Kirkwood combi­
nation scheme" (geometric means) and are used in preference 
to the parameters employed by Ondrechen et a/.,60 as they appear 
to give a better binding energy for benzene-Ari.61 The different 
parameters result in a change in geometry of one of the transition 
states of benzene-Ar2 from C^ to Cn as discussed below. The 
reaction pathways were all calculated for a fixed benzene molecule, 
as before,17 which means that they are further idealized. The 
optimizations were conducted in Cartesian coordinates"-20 and 
converged rapidly, in contrast to previous calculations using 
internal coordinates.'7 In this case the second derivatives were 
formed from two-sided numerical derivatives of the analytic 
gradient.17 

The generator for the rearrangement of benzene-Ari shown 
in Figure 10 is £*. The C6, minimum and Cu- transition state 
have energies of 0.001 1072 and 0.000 4219 hartree, respectively, 
and the Ar atom lies 3.470/5.318 A from the center of the ring. 
The reaction path consisted of 149 steps, and with the barrier of 
0.000 6853 hartree, we find S = 27.722 a0, y = 1.00, y„ = 40.0 
amu, D = 13.298 a0, and 0 = 1.6 X 1 Or31 cm"1. In this case /TCNPI 
= 2 X (6!)2 and the MS group has the same class structure as 
the point group D6I,, with 24 members and the dipole moment 

(58) Stone. A. J. Chem. Phys. LtU. 1981.83,233. Stone, A. J.; Alderton, 
M.MoI.Phys. 1985,56,1047. Stone.A.S.lnTheoreliealModelsoJChemical 
Bonding, Maksic, Z. B., Ed.; Springer-Verlag: Berlin, 1991; part 4. 

(59) Slater, J. C ; Kirkwood, F. G. Phys. Rev. 1931, 37, 682. 
(60) Ondrechen, M. J.; Berkovitch-Yellin. Z.; Jortner, J. J. Am. Chem. 

Soc. 1981. 103, 6586. 
(61) Menapace. J. A.; Bernstein, E. R. J. Phys. Chem. 1987, 91, 2533. 
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Figure 11. Rearrangement of the (2 + 0) minimum of benzene-Ar2 to 
the (1 + 1) global minimum. 

operator transforming as A\n. There are 86 400 distinct minima 
linked in pairs, and the two tunneling states are Aig at energy /S 
and A2u at -ft the electric dipole transition between these two 
levels is therefore forbidden. 

For benzene-Ar2 there are two minima: the (2 + 0) C5 
minimum has both Ar atoms on the same face of the ring and 
the (1 + 1) Da, minimum has one on each—the energies for the 
current potential are 0.002 0699 and 0.002 237 hartree, respec­
tively. A relatively high energy transition state links the two, as 
shown in Figure 11; the barriers are 0.000 50 and 0.000 67 hartree, 
and the reaction path has 107 steps, giving 5 = 21.277 ao, 7 = 
1.99, ym = 40.19 amu, D = 13.830 A0, and /S = 3.1 X 10-30Cm-1. 
Hence, the migration of atoms between faces is unlikely to produce 
any detectable splitting effects in either benzene-An or benzene-
Ar2. However, there are two distinct degenerate rearrangements 
of the (2 + 0) minimum with much lower barriers. The transition 
states have C2,, (Figure 12a) and C5 (Figure 12b) symmetry with 
energies of 0.002 0024 and 0.001 9915 hartree and barriers of 
0.000 065and0.000 075 hartree, respectively. For the lower energy 
transition state, the reaction pathway has 45 steps and S = 8.673 
O0, y = 1.00, ym = 80.0 amu, D = 8.317 a0, and /3 = -1.2 X 10"9 

cm-'. Note that in the fixed benzene approximation this 
rearrangement is completely delocalized. The transition state of 
higher energy correlates with a more symmetrical C20 structure 
when the Lennard-Jones parameters of Ondrechen et a/.60 are 
used. The reaction path for the present potential has 51 steps 
and 5 = 6.988 a0, y = 1.96, ym = 40.86 amu, D = 6.515 a0, and 
/3 = -4.0 X 10-« cm-1. 

Hence, for the degenerate rearrangements of the (2 + 0) 
minimum, we calculate a somewhat larger tunneling splitting for 
the mechanism with the higher barrier; the latter process is more 
localized, and so the estimated effective mass is lower. The 
cooperativity of the two rearrangements can also be seen from 
the displacements along the reaction path shown in Figure 12. 

For the labeling schemes in the figure, the appropriate 
generators are (AB)(26)(35)* and (13)(46)*, corresponding to 
the C21, and C5 transition states, respectively. Each rearrangement 
on its own gives rise to an MS group with 12 members and a 
connectivity of 2. Since hCmi = 2 X 2! X (6!)2, the distinct (2 
+ 0) minima are linked in 172 800 disconnected sets with six 
members each, connected in a ring. The MS group is isomorphic 
to Ctv with the dipole moment operator transforming as A2. The 

minimum (C,) 

4-
transition state (Cjv) 

(b) 

. • & • 

" & 

transition state (CV 

^ - • • # • 

-fr 
' • # • 

minimum (C1) 
Figure 12. Degenerate rearrangements of the (2 + 0) minimum for 
benzene-Ar2 via (a, top) Ca, and (b, bottom) C1 transition states. These 
are overhead views; the height of the two Ar atoms above the ring does 
not vary greatly throughout both processes. 

splitting pattern, appropriately enough, is the same as for the r 
system of benzene, because the present tunneling problem 
generates the same secular determinant as the simplest Hfickel 
treatment of this molecule. Using the labels of C&,, we find the 
tunnelingstatesAt(2/3),Ei(/3),E2(-/3),Bi(-2|8),andelectricdipole 
transitions are forbidden within this manifold. 

When the two rearrangements are considered together, the 
MS group increases to 24 operations with a connectivity of 4 and 
a class structure isomorphic to Z>6», where interchange of the two 
argon atoms (AB) corresponds to the point group operator ('. This 
is the largest MS group possible if the two argon atoms are confined 
to one side of the benzene ring. The distinct minima occur in 
86 400 disconnected sets with 12 in each. Using the appropriate 
labels for D^, the dipole moment operator transforms as A2g and 
the tunneling states are Alg(2ft, + 2/8«), A2u(2ft, - 2ft,), Elg(ft, 
+ ft,), Elu(ft,-ft,), E2u(-ft + ft), E2g(-fts-ft), Blu(-2ft + 2ft), 
and Big(-2ft - 2ft), where ft corresponds to the rearrangement 
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in Figure 12b, etc., and again no electric dipole transitions are 
allowed within this manifold. The effective values of /3 are now 
ft, = -1.4 X 10-9 anci pb - _6.4 x 10"6 cm"1. As the mirror 
relation for the energies is maintained, we may also conclude that 
there can be no odd-membered rings in the reaction graph. 

VI. Conclusions 

Tunneling splittings have been predicted for a range of model 
cluster systems, including both an analysis of the reaction graph 
and an estimate of the probable magnitude of the effect in each 
case. The connectivity of the reaction graph is calculated 
automatically, given a minimal number of generator operations, 
and is used to set up the corresponding secular determinant for 
a linear combination of localized wave functions approximation 
to the tunneling states. A Huckel-type approach is employed in 
which only the off-diagonal Hamiltonian matrix elements between 
minima that are directly linked by a given rearrangement are 
needed. These are estimated by mapping the many-dimensional 
reaction pathway onto a model one-dimensional problem, and 
calculations for both degenerate and nondegenerate rearrange­
ments are possible. The data required are all obtained from the 
calculated minimum-energy reaction pathways in the form of the 
barrier, the distance between the two minima in nuclear 
configuration space, and an effective mass. 

Ab initio results at the DZP/MP2 level for the trans-tunneling 
pathway of (HF)2 give an estimate for the tunneling splitting 
that is in error by between 1 and 2 orders of magnitude compared 
to experiment and accurate calculations. Hence, the present 
procedure should be capable of indicating which clusters are likely 
to show significant tunneling effects and provide the splitting 
pattern and an estimate of the associated magnitudes. The allowed 
electric dipole transitions within a given manifold are also 
generated automatically. 

For C5Hs+ the splitting pattern agrees with a previous analysis, 
and one ambiguity in the assignment of symmetry labels has 
been resolved. However, in both this system and BgHj2- the 
tunneling splittings are probably too small to be seen experi­
mentally. Significant effects are predicted for model clusters 
bound by Lennard-Jones and Morse potentials, especially for a 
light element such as Ne. Observable splittings are also calculated 
for the (2 + 0) isomer of benzene-Ar2 due to the two low-energy 

degenerate rearrangements of the two Ar atoms on one face of 
the benzene ring. 
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Appendix 

The estimate of the effective mass described in section III is 
certainly not unique. A plausible alternative would be to calculate 
this quantity from the energy change resulting when the transition 
state is perturbed slightly along the minimum-energy reaction 
path. This is attractive because, in the semiclassical approach, 
0 is defined as an integral over the classically forbidden region,2 

which is centered on the transition state in a degenerate 
rearrangement. However, there remains the problem of mapping 
the pathway onto a one-dimensional function of the path length, 
s. 

If all the atoms have the same mass, m, then it is not hard to 
show that AJ2 = m Aq2, where Aq is the magnitude of the normal-
mode displacement for the unique degree of freedom with negative 
curvature. This suggests that the appropriate Hamiltonian is 

and that the effective mass be defined as (d2E/ds2),s/(d
2E/dq2)ts. 

All the splittings reported in section V (and for the water trimer) 
were recalculated using the above estimate of the effective mass, 
which was usually found to be less than or equal to ym. The new 
splittings are generally larger than before; for example, 0 = 2.2 
cm-1 for (HF)2, which is now too big. However, the only case 
where a previously negligible splitting may become significant is 
for CsHs+, where 0 increases to the order of 10-5 cm-1. 


